Künstliche Intelligenz in der Entwicklung von Material, Zellen und Batteriesystemen
-
Segmentierung und Augmentierung von Rasterelektronenmikroskopie-Daten mittels Deep Learning-Methoden
-
Improving battery development by leveraging representative and dynamic load profiles derived from cloud customer data
-
From Variance Attribution to Causal Inference: Understanding Impedance Variance Drivers for Robust Battery State Estimation
-
AI-Readiness von Batteriedaten: Datenvorverarbeitung für ML-basierte Batteriezelldiagnostik
-
AI-Assisted Mapping of Life Cycle Inventory Data for Life Cycle Assessment
-
Physics-informed Modeling Framework for AI-based Battery Pack Design and Diagnostics Optimization
-
Defect Analysis of as-assembled All-Solid-State Batteries via AI enhanced Scanning Acoustic Microscopy
-
Machine learning for battery quality classification and lifetime prediction using formation data
-
Modeling Swelling Behavior in Nano-Silicon Coated Graphite Anodes Using Discrete Element Method: Insights into Particle-Level Interactions and Irreversible Volume Changes